Python Tutorial: Intermediate

This tutorial is designed to take you from an intermediate level in Python programming. We will cover intermediate techniques with real-world examples, code snippets, and datasets. Each section will include problem-solving exercises and solutions.

Table of Contents

  1. Intermediate Python
    • Object-Oriented Programming (OOP)
    • Error Handling (Try-Except)
    • Modules and Packages
    • Working with Libraries (NumPy, Pandas)
    • Data Visualization (Matplotlib, Seaborn)

2. Intermediate Python

2.1 Object-Oriented Programming (OOP)

OOP concepts include classes and objects.

# Class Example

class Dog:

    def __init__(self, name, age):

        self.name = name

        self.age = age

    def bark(self):

        return f”{self.name} says woof!”

my_dog = Dog(“Buddy”, 3)

print(my_dog.bark())

2.2 Error Handling

Use try-except blocks to handle errors.

# Error Handling Example

try:

    result = 10 / 0

except ZeroDivisionError:

    print(“Cannot divide by zero!”)

2.3 Modules and Packages

Python modules are reusable code files.

# Importing a module

import math

print(math.sqrt(16))

2.4 Working with Libraries

  • NumPy: For numerical computations.
  • Pandas: For data manipulation.

# NumPy Example

import numpy as np

array = np.array([1, 2, 3])

print(array * 2)

# Pandas Example

import pandas as pd

data = {“Name”: [“Alice”, “Bob”], “Age”: [25, 30]}

df = pd.DataFrame(data)

print(df)

2.5 Data Visualization

  • Matplotlib: For plotting graphs.
  • Seaborn: For statistical visualizations.

# Matplotlib Example

import matplotlib.pyplot as plt

x = [1, 2, 3, 4]

y = [10, 20, 25, 30]

plt.plot(x, y)

plt.xlabel(“X-axis”)

plt.ylabel(“Y-axis”)

plt.title(“Simple Plot”)

plt.show()

# Seaborn Example

import seaborn as sns

tips = sns.load_dataset(“tips”)

sns.scatterplot(x=”total_bill”, y=”tip”, data=tips)

plt.show()

Datasets

References

This tutorial provides a comprehensive guide to Python programming. Practice the examples and explore the datasets to solidify your understanding. Happy coding! 🚀

Leave a Reply

Your email address will not be published. Required fields are marked *